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Summary: The eye and the brain are immunologically privileged sites, a
property previously attributed to the lack of a lymphatic circulation.
However, recent tracking studies confirm that these organs have good
communication through classical site-specific lymph nodes, as well as
direct connection through the blood circulation with the spleen. In addi-
tion, like all tissues, they contain resident myeloid cell populations that
play important roles in tissue homeostasis and the response to foreign
antigens. Most of the macrophage and dendritic cell (DC) populations in
the eye are restricted to the supporting connective tissues, including the
cornea, while the neural tissue (the retina) contains almost no DCs, occa-
sional macrophages (perivascularly distributed), and a specialized mye-
loid cell type, the microglial cell. Resident microglial cells are normally
programmed for immunological tolerance. The privileged status of the
eye, however, is relative, as it is susceptible to immune-mediated inflam-
matory disease, both infectious and autoimmune. Intraocular inflamma-
tion (uveitis and uveoretinitis) and corneal graft rejection constitute two
of the more common inflammatory conditions affecting the eye leading
to considerable morbidity (blindness). As corneal graft rejection occurs
almost exclusively by indirect allorecognition, host DCs play a major role
in this process and are likely to be modified in their behavior by the ocu-
lar microenvironment. Ocular surface disease, including allergy and
atopy, also comprise a significant group of immune-mediated eye disor-
ders in which DCs participate, while infectious disease such as herpes
simplex keratitis is thought to be initiated via corneal DCs. Intriguingly,
some more common conditions previously thought to be degenerative
(e.g. age-related macular degeneration) may have an autoimmune com-
ponent in which ocular DCs and macrophages are critically involved.
Recently, the possibility of harnessing the tolerizing potential of DCs has
been applied to experimental models of autoimmune uveoretinitis with
good effect. This approach has considerable potential for use in transla-
tional clinical therapy to prevent sight-threatening disease caused by
ocular inflammation.

Keywords: dendritic cells, tolerance, autoimmunity, cell trafficking, in vivo imaging,
transplantation

Introduction

The eye reveals a novel perspective on homeostatic mecha-

nisms, as it has evolved in such a way that it combines higher

order light-sensing processes with vegetative functions, aimed

at both maintaining normal cellular physiology as well as

warding off attack by invasive foreign microorganisms with

the minimum of fuss (immune privilege). The evolutionary



ancestral link between the eye as an outpouching of the

brain has meant that the protective meningeal coverings of

the brain have homologs in the three basic layers of the

eye, namely the outer protective corneo-scleral envelope

and the uveal tract (middle vascular layer) providing criti-

cal vegetative support to the innermost layer, the delicate

neural retina (Fig. 1). One example of the adaptation of

physiology within the eye is represented by the blood flow

in the choroid (Fig. 1) which has the highest flow rate per

square millimeter of any tissue in the body. Indeed, blood

travels at such a speed through this vascular bed that it is

only partly deoxygenated when coursing from the arterial to

the venous system. Thus, despite their very high metabolic

activity, the retinal photoreceptors do not have enough time

to extract all the available oxygen (1).

Accordingly, myeloid sentinel and scavenger cells [dendritic

cells (DCs) and macrophages] in the eye are exposed to a

unique environment in the choroid (one component of the

uveal tract) (Fig. 1) layer, which contrasts starkly with the

entirely avascular corneal microenvironment, where such cells

are instead exposed to lower temperatures and the direct

effects of short-wavelength ultraviolet (UV) light. It might be

expected that for these reasons alone, cells trespassing through

the disparate ocular tissues will behave differently depending

on the circumstances.

The eye and the brain are often described together in the

context of immune privilege, a term coined to describe the

modified immune responses to allograft or foreign antigen

when placed into the anterior chamber of the eye (2, 3).

However, the eye comprises much more than central nervous

system (CNS)-derived neuro-epithelial tissue (the retina), and

it is a misconception to ascribe ‘privilege’ equally to all its

components. Indeed the term privilege is a relative one and

can be graded by the strength of immune responses in many

different situations. Thus, ‘immune privilege’ is a property

also attributed to certain solid tumors (4) and to surviving

vascularized allografts (4, 5). Paradoxically, there is even a

price to be paid for immune privilege in the eye, which may

render the eye more at risk of severe damage once the immu-

nological barriers are breached (2, 6).

Myeloid cells in ocular tissues

The spectrum of myeloid cells

Innate immune cells responding to pathogen-associated mole-

cule patterns (PAMPs) represent the first line of defense in the

immunological battlefront in any tissues. Bone marrow-

derived cells constitute one major subset of innate immune

cells and have a common progenitor cell generating two main

lineages, myeloid and lymphoid subsets (reviewed in 7–11).

Myeloid cells develop into two major categories, macrophages

and DCs, which leave the bone marrow as precursor cells and

populate the tissues. In secondary lymphoid tissues such as

the spleen, Flt3 receptor+ progenitor cells may continue to

divide in situ providing a constant low self-sustaining popula-

tion of DCs (7). The evidence for such in situ proliferation of

myeloid precursor cells in non-lymphoid tissues is less con-

vincing, and replenishment of tissue-resident myeloid cells

such as in those that reside in the skin is believed to be directly

from the bone marrow (12). In addition, there is a potential

considerable recruitment of ‘inflammatory’ DCs from mono-

cytes in times of need (13) both to the tissues, which then

ultimately migrate to the draining lymph node, and also

directly from the blood to the secondary lymphoid tissues

(14). This process is not fail-safe, as under certain circum-

stances bacteria and bacterial products can prevent the conver-

sion and maturation of monocytes to DCs (15). This has

important implications for induction of ‘tolerogenic’ DCs by

lipopolysaccharide (LPS) (see later).

Fig. 1. Outline diagram of anatomy of the human eye. The three main
layers of the eye are shown: the outer coat of cornea ⁄ sclera, the middle
layer of uveal tract comprising the iris, ciliary body, and the choroid, and
the inner layer of the neural retina. The optically clear vitreous gel occu-
pies the central compartment and contains the central hyaloid canal.
Blood flow in the choroid is the highest of any tissue in the body. The
choriocapillaris is a modified capillary network, in effect forming a
blood-filled lake which serves the highly metabolic outer retinal photore-
ceptors. The majority of ocular dendritic cells reside in the uveal tract.
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‘Lymphoid’ lineage DCs derive from bone marrow-derived

lymphoid precursors and colonize the primary (thymus) and

secondary lymphoid tissues (thymus, spleen, liver, and lymph

nodes) and reside there (reviewed elsewhere in this volume).

By contrast, myeloid lineage cells, which are present in non-

lymphoid peripheral tissues, constantly migrate to the second-

ary lymphoid organs, carrying immunological information to

maintain homeostasis (16, 17). Interestingly, each tissue or

site in the body, such as the cornea, has its ‘regional’ site-spe-

cific lymph node that is restricted to receiving migratory mye-

loid cells from that anatomically defined region (18). In

addition, myeloid cells migrating to their site-specific lymph

node normally end their travels at this site and do not recircu-

late, unlike naive T cells, both in the inflamed tissue and in

the steady state, although different signaling processes may be

activated for each condition (19–21). Specific molecules such

as the Ca+-activated channel protein TRMP4, also regulate

migration separately from activation of DCs (22). DCs have a

more defined migratory role in transporting antigen to the

secondary lymphoid tissues than macrophages which, after

recruitment to the tissues, may live and die in situ. Both sets of

cells respond to specific cues (chemokines and other media-

tors) (23–25). In humans, it has been suggested that this dif-

ference in behavior of macrophages from DCs is related to the

expression of cell surface adhesion receptors such as CD312

(26).

The ocular surface

The ocular surface has many similarities to the skin and com-

prises two major components: the conjunctiva and the cornea

(reviewed in 1). The conjunctiva is a loose tissue covering the

globe and the inner surface of the eyelids, and consists of a

stratified non-keratinized epithelium, with specialized struc-

tures such as goblet cells, overlying a fine vascular connective

tissue stroma, which has parallels in both the dermis of the

skin and the submucosa of the respiratory tract. The conjuncti-

val epithelium contains intraepithelial lymphocytes and DCs

(Fig. 2), while the stroma contains several types of immune

cells including monocytes, macrophages, mast cells, and other

innate cells. There are few lymphocytes or focal lymphoid

aggregates in the normal rodent conjunctiva, although in

humans, there are collections of non-encapsulated conjunc-

tiva-associated lymphoid tissues (CALT), especially in older

eyes.

The conjunctiva is highly vascular and is essentially the only

part of the ‘eye’ that contains lymphatics. These drain to the

superficial cervical lymph node in the mouse, the same lymph

node that drains the periocular skin. This is strictly separate

from the eye-draining lymph node, which is the submandbu-

lar node (18). The conjunctiva forms one part of the mucosa-

associated lymphoid system (CALT, see above) (27), and

immunological tolerance can be induced by administration of

soluble antigens to the ocular surface (28). In addition, the

conjunctiva develops large leukocytic aggregates (nodules)

during corneal graft rejection, similar to lymphoid aggregates

in the gut (29).

The cornea and the conjunctiva-covered sclera are continu-

ous through a very important junctional region termed the

limbus, important because it is believed to be the source of

epithelial stem cells required for repair of corneal epithelial

defects (30, 31). In addition, the limbus is the site where the

conjunctival surface vessels terminate, leaving the cornea an

avascular structure. During development, there are important

signals derived from factors such as vascular endothelial

growth factors (VEGF), which inhibit corneal vascularization

and lymphangiogenesis (32, 33).

The cornea comprises a stratified epithelial layer atop a

basement membrane (Bowman’s membrane) and overlying

the tough connective tissue stroma, which comprises the bulk

of the cornea (Fig. 3). Its type I ⁄ type III collagenous structure

is highly ordered to permit the transmission of visible light

waves. The posterior surface is lined by a single monolayer of

specialized endothelial cells, whose function is to pump fluid

out of the cornea in a posterior direction into the anterior

chamber. The corneal stroma is thus relatively dehydrated

compared with other extracellular matrices and is additionally

supported by a specific glycosaminoglycan, keratan sulfate.

This arrangement ensures the transparency of the cornea

by maintaining regular spacing of the uniquely sized and

uniform corneal collagen fibrils (1).

Fig. 2. Conjunctival DCs in the rat. Both intraepithelial and stromal DCs
are shown expressing MHC class II (Ox6) (immunoperoxidase stain).
DCs, dendritic cells; MHC, major histocompatibility complex.
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Throughout the stroma there are scattered fibrocytes (kera-

tocytes) which maintain the stromal matrix components. In

addition, there is a significant population of recently discov-

ered leukocytes, the DC component of which decreases in

number from the periphery towards the center. There has

been considerable controversy over the nature of these cells.

Initial studies suggested that the central cornea was devoid of

major histocompatibility complex (MHC) class II+ cells, and

this was considered one explanation for the immune-privi-

leged status of the cornea (34). However, recent studies have

confirmed that the central corneal stroma does indeed contain

MHC class II+ cells, but in the mouse at least, these cells are

CD11b+CD11c) (35) (Fig. 4). Some of these cells also express

CD45+CD68+CD169+ and CX3CR1 (36). An earlier set of

studies suggested that the mouse corneal stroma contained a

population of MHC class II), CD11c+ cells which became

MHC class II+ after migration to the draining lymph node

(37, 38). However, we and others have not been able to
Fig. 3. Section of normal mouse cornea showing the anterior surface
epithelium (top), the stroma containing keratocytes and the posterior
surface endothelial monolayer (arrow) (H&E).
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Fig. 4. Views of the cornea. (A, B) Confocal microscopy of corneal wholemount demonstrating DCs in the corneal epithelium of CX3CR1-gfp trans-
genic mouse; ‘plan views’ showing the ramified processes spreading laterally [3A; epithelia nuclei – blue (DAPI)]; (C) one of the DCs from (A, B)
viewed in Z-profile sending a process towards the apical surface; (D–F) Corneal wholemount preparations showing intrastromal leukocytes (D: CD45;
E: CD11b: F: MHC class II); (G, H) Corneal wholemount staining for CD 11c before (G) and 24 h after (H) epithelial abrasion. DCs, dendritic cells;
MHC, major histocompatibility complex.
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repeat these studies (35, 39, 40). Instead, we find that the

population of leukocytes in the central corneal stroma com-

prise two subsets: an MHC class II+ population (approxi-

mately 40%) that are CD11b+ CD11c) (i.e. macrophages) and

an MHC class II) population that are CD34+ and are probably

myeloid precursor cells (40). There is also a small population

of B220+CD11clo cells which appear to be plasmacytoid DCs.

Interestingly, it has been suggested that the CD11b+ cells have

the potential to differentiate into Lyve-1+ cells and form lym-

phatics when the cornea is inflamed (41). Recent observations

(42) have revealed that MHC class II+ CX3CR1+CD45+ cells in

the corneal stroma have extremely fine (<0.8 lm) cellular

processes (Fig. 5), which extend several hundreds of microns

laterally and bear the hallmarks of membrane or tunneling

nanotubes (43). These unique cellular processes, previously

only observed in vitro, were seen occasionally to form cellular

bridges between other MHC class II+ cells. Their function in

the cornea is yet to be determined; however, they do increase

in number following injury alone and injury plus LPS

exposure (42). It has been speculated that they form an

immunological syncytium and act as a means for distantly

separated cells to communicate in this relatively sparsely

populated tissue (43).

The corneal epithelium, considered as an immunological

entity discrete from the stroma, also contains a population of

MHC class II+ cells that are less numerous towards the center

(Fig. 4). Variability in immunostaining in the cornea using

anti-CD11c monoclonal antibody experienced by different

researchers has led to some uncertainty concerning the pres-

ence of DCs in the corneal epithelium, but recent studies of

the CD11c-enhanced yellow fluorescence protein (eYFP)

transgenic mice show that intraepithelial MHC class II+ cells

co-express CD11c+ (44, 45, H.R. Chinnery, unpublished

data) confirming their DC lineage. There are few if any Gr1+

cells in the resting corneal epithelium or stroma, most of

which were also B220+, indicating they were probably plas-

macytoid DCs (pDCs) (40). Recent studies have shown that

the MHC class II+ cells reside in the basal epithelial layer (46)

migrating into this site from the peripheral cornea but not

from the stroma (47). In addition, in the epithelium some

DCs project processes (periscopes) anteriorly towards the

surface tear film where it has been speculated that they might

sample antigens from the environment (42, 48) (Fig. 4). In

this manner, they are analogous to similar intraepithelial DCs

in the intestinal and respiratory tracts (49–51).

Corneal and conjunctival intraepithelial leukocytes most

likely represent the equivalent of skin Langerhans cells, and

indeed all corneal MHC class II+ cells are rather loosely

described as Langerhans cells (52). In the skin, some Langer-

hans cells express the C-type, mannose-specific lectin Langer-

in ⁄ CD207 as well as CD1a, while dermal DCs express a

different C-type lectin, DC-SIGN; there is also a separate subset

of Langerin+ dermal DCs (12). In addition, Langerhans cells

in the skin constitutively express E-cadherin, which can bind

homotypically to other Langerhans cells or to the epithelium

and can also bind to aE-integrin+ ⁄CD103+ intraepithelial

lymphocytes (12).

Recent studies of the human cornea have confirmed that the

central corneal epithelium lacks DCs but the peripheral cornea

contains Langerin ⁄CD207+ Langerhans cells, and the periph-

eral anterior corneal stroma, equivalent to the dermis of the

skin, contains DC-SIGN ⁄ CD209+ DCs (53). Few of the

peripheral Langerhans cells expressed DC-LAMP, a marker of

DC maturation. Interestingly, the cornea is negative for

E-cadherin, while the conjuctiva is positive and is also the site

where intraepithelial CD8a+ T cells reside (54). The central

corneal stroma, however, contains a small population of

MHC class II+ macrophages (Fig. 4). In the mouse there is a

fairly extensive and evenly distributed population of

CD45+CD11b+F4 ⁄80+ macrophages (36). These human and

mouse studies are of considerable importance to the mecha-

nism of corneal allograft rejection, which unlike with vascu-

larized grafts, is almost exclusively mediated via indirect

allorecognition (see below).

Fig. 5. Two MHC class II+ DCs (green) in the corneal stroma in com-
munication via a long fine membrane nanotube. Keratocyte nuclei in
the corneal stroma are clearly evident (blue, DAPI). MHC, major histo-
compatibility complex; DCs, dendritic cells.
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In the mouse, no Langerin+CD11c+ cells have been detected

in the conjunctiva and only occasional Langerin+CD11c) cells

(55). In addition, in the normal conjunctiva there are almost

no pDCs present, but these cells infiltrate the conjunctiva in

large numbers during allergic inflammation (55). Few studies

have been performed on conjunctival DCs in humans (54).

Expression of the FCeR1 is characteristic of intraepithelial DCs

and the numbers of such cells are also greatly increased in

allergic conjunctivitis (56) as well as DCs expressing IgE (57),

as might be expected. Interestingly, chronic application of

topical therapies (e.g. anti-glaucoma medications) to the ocu-

lar surface is also associated with an increase in migratory

Langerhans cells and may even induce a low level of inflam-

mation (58). There have been no studies reported on epithe-

lial cell adhesion molecule (EpCAM) in ocular surface cells.

The differences in corneal and conjunctival Langerhans

cells, particularly in the expression of E-cadherin, might be

reflected in their function in the steady state: in the skin,

expression of E-cadherin is downregulated on migratory Lan-

gerhans cells, which may apply also to cells in the conjunctiva.

The lack of E-cadherin in the cornea probably reflects the rela-

tive paucity of these cells in this tissue.

The intraocular compartment

Early studies suggested that the eye had no lymphatic vessels

and no immune cells. All immune cell traffic was considered

to come via the blood stream and the uveal tract was consid-

ered to be a modified lymphovascular tissue (59). However,

when the role of tissue leukocytes, and DCs in particular, in

the induction of immune responses became understood, tis-

sue distribution analyses suggested that most tissues contained

such cells, but that neural tissue and in particular the CNS was

devoid of antigen-presenting cells (APCs) (60, 61). However,

this notion was modified when it became clear that the lining

tissues of the CNS (the meninges and their perivascular exten-

sions) contained rich populations of resident DCs and macro-

phages (62, 63), while the brain’s complement of bone

marrow-derived microglial cells are now recognized to play a

role in tissue-specific immunoregulation (64–66). These stud-

ies were extended to the eye, in which the uveal tract (com-

prising the iris, ciliary body, and choroid; Fig. 1) of all species

studied was shown to contain similar extensive networks of

macrophages and DCs (Fig. 6). In the iris and ciliary body,

these cells were seen to be distributed throughout the stroma

and seemed to be sessile cells with little evidence of migration

out of these tissues when challenged intraocularly with anti-

gen (67). However, in related studies, it was clear that antigen

delivered to the anterior chamber of the eye (Fig. 7) is readily

transported as soluble antigen via extracellular spaces that

eventually communicate with lymphatic channels; it is possi-

ble, even likely, that some of this antigen is cell-associated

antigen inside DCs and macrophages, as demonstrated for

antigen tracking from the cornea (see below) (68, 69).

Similar populations of CD11b+CD11c+ DCs and macro-

phages are present in the choroid (70, 71), where they

appeared to be draped along the length of the medium and

larger sized vessels (Fig. 6), as well as in close apposition to

the basal surface of the retinal pigment epithelium (RPE).

Here, MHC class II+ CD11c+ cells appeared to insert dendritic

processes close to the basal aspect of the RPE cell, an area

where there is good evidence that shed photoreceptor debris

accumulates with age possibly representing a source of

(auto)antigen. This close relationship may underlie one aspect

of the sentinel role of DCs in regulating autoimmune pathol-

ogy such as uveoretinitis (see below) in addition to the role

played by peripheral retinal DCs (71).

Uveal tract DCs are phenotypically CD8a)CD11b+CD11c+,

i.e. conventional myeloid DCs. Few if any B220+ pDCs have

been found, nor have CD8a+ DCs been found, which usually

A B C

20 µm
40·00 µm

40·00 µm

Fig. 6. Views of the iris. (A) Iris wholemount from CX3CR1-gfp transgenic mouse stained with anti-MHC class II antibody (red). Note the mixture
of CX3CR1+ MHC class II+ cells (orange, putative DCs) and MHC class II) Cx3cr1+ cells (green only, putative macrophages); (B) Similar preparation
showing intraepithelial MHC II+ CX3CR1+ DCs in the ciliary body (orange); (C) Choroidal wholemount from wildtype mouse stained for F4 ⁄ 80
(green) and phalloidin (red) showing distribution of perivascular macrophages. MHC, major histocompatibility complex; DCs, dendritic cells.
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are restricted to secondary lymphoid tissue. Uveal tract macro-

phages are predominantly CD11b+, F4 ⁄80+ cells with

few signs of activation markers in the resting state (Fig. 6). A

proportion of the choroidal macrophages are also CD169+

(71–73).

It is possible to culture DCs and macrophages from explants

of uveal tissue, including the human, and such cells morpho-

logically sort into two types, a small highly motile and

strongly MHC class II+ population and a smaller population of

DCs with extensive veil-like projections. Expression of

CD80 ⁄ 86 on these cells is normally low, but their antigen-

presenting function can be significantly enhanced if co-cul-

tured with macrophages (74). Previous studies had shown

that iris-resident macrophages, unlike their resident counter-

parts in the lung, were more pro-inflammatory than immuno-

suppressive (74, 75).

Initial searches for DCs in the retina using classical immuno-

histochemical staining of tissue sections were negative (71).

The predominant leukocytic cell in the retina was shown to be

the microglial cell, a CD11c+CD45loF4 ⁄80+ cell (76) (Fig. 8),

which was considered initially to have antigen-presenting

capacity, both in the retina and in the brain (see above). How-

ever, subsequent extensive investigations of the microglial cell

have concluded that its main role is an immunosuppressive

one, at least in the non-inflamed retina (77–79). Instead, a

second very small population of perivascular MHC class II+

DCs and macrophages that line the retinal vessels in meningeal

extensions were thought to be cells with the potential to initi-

ate retinal inflammation (80) (Fig. 8). These cells are analo-

gous to the perivascular CD11c+ cells in the brain

parenchyma, which, in elegant conditional knockout studies,

have been shown to be required for induction of experimental

autoimmune encephalitis (EAE) in mice (81).

However, most recently, using flat mounts of the retina, a

second small subpopulation of MHC class II+ 33D1+ cells has

been found in the retinal periphery and surrounding the optic

nerve (82). These cells are located at sites where the initial

signs of inflammation appear in autoimmune uveoretinitis

and are also those sites where activated retinal antigen-

specific T cells initially accumulate prior to disease onset

(82). In addition, they are prominent participants in auto-

immune retinal inflammation (Fig. 9). It has recently been

shown that the monoclonal antibody 33D1 is a marker for

the DC receptor DCR1 expressed selectively on splenic MHC

class IIhi DCs in the marginal zone and associated with stimu-

lation of immune responses (83). Their location in peripheral

sites in the retina is therefore intriguing, particularly as the

expression of 33D1 was strain dependent, strongly positive in

the EAU-resistant Balb ⁄ c (H2d) mouse but negative in the

resting retina of the B10RIII (H2r) mouse (82). No CD8a,

DEC205, B220, CD80 ⁄86 positive DC was found in the

normal retina (82).

Steady-state turnover of myeloid cells in the eye

‘Resident’ bone marrow-derived cells in the tissues are replen-

ished in the adult at tissue-specific variable rates from precur-

sor ⁄progenitor cells which seed the periphery (84, 85). In

addition, monocytic cells from the blood stream can rapidly

enter inflamed sites and differentiate into both macrophages

and DCs (86). The eye participates in this process and each

ocular tissue is repopulated at slightly different tempos. In

addition, the molecular signals required to repopulate the tis-

sues may be different in the resting and in the inflamed state.

The chemokine receptor CX3CR1 appears to mediate hom-

ing of MHC class II+ DCs to the cornea but does not appear

critical for recruitment of CD45+CD169+CD11b+ macrophag-

es (36). In addition, studies of mouse chimeras using the

GFP-CX3CR-1 mouse cell lines have shown that the major part

of the corneal myeloid cell population is replenished over a

period of 8 weeks (36). Myeloid cells, particularly macro-

phages, have long been implicated in corneal blood vessel

angiogenesis, and more recently CD11b+ macrophages have

been identified as precursors of lymph vessels in the cornea

Anterior chamber Assd immune deviation

–?

Spleen

T reg

DTH

+
CFA

Re-challenge

Skin
–

Fig. 7. Anterior chamber-associated immune deviation (ACAID). The
diagram shows antigen inoculation into the anterior chamber of the eye
inducing a ‘deviant’ immune response, in that, when the organism is re-
challenged with the same antigen at a distant site, there is suppression of
the delayed-type hypersensitivity response to this antigen but no suppres-
sion of cytotoxic T-cell or complement fixing antibody responses. ACAID
is antigen specific, i.e. immune tolerance to a third party antigen cannot
be induced by this technique. ACAID requires an intact spleen, involves
the thymus, and is mediated via NKT cells, F4 ⁄ 80 macrophages, and
CD8+ regulatory T cells. Unusually, CD4+ T cells are also required. Its
teleological role is unclear.
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(41). Furthermore, evidence has been provided that CX3CR1+

macrophages ⁄DCs might prevent new vessel formation, while

CCL2-responding macrophages may promote new vessel

growth (87). Interestingly, angiogenesis-promoting macro-

phages appear to require the surface molecule CEACAM-1

(88). The cornea is normally devoid of both blood and lymph

vessels, a process which appears to be regulated by VEGF ⁄
VEGF receptor interaction. Recently, a splice variant isoform

of the VEGFR2 has been described to inhibit lymphangiogene-

sis in the cornea (33). The control of the resident myeloid cell

population in the cornea has significant impact on its normal

avascular physiology.

None of the above studies examined the conjunctiva; how-

ever, in the skin, chimeric model experiments have shown that

a proportion of Langerhans cells are self-renewing (12), and

while this may apply to the conjunctiva, there is little evidence

of this effect in corneal APCs, as irradiation led to a marked

depletion and repopulation almost entirely with bone marrow-

derived cells within 2 weeks postirradiation (Xu H, Forrester JV,

unpublished data). It is more likely, however, that conjunctival

Langerhans cells are predominantly if not exclusively bone

marrow derived, as they are in other mucosal epithelia (89).

Turnover of myeloid cells in the retina has also been studied

for many years, initially using radiolabeling and autoradio-

graphic histological techniques (90, 91). More recently, bone

marrow chimera studies using the same CX3CR1 model have

shown that turnover of microglial cells in the neural retina is

considerably slower than corneal myeloid cells, taking up to

6 months to completely restore retinal subpopulations, and is

not dependent on the expression of CX3CR1 (73, 92). In

addition, normal aging as well as certain photoreceptor

retinal degenerations are associated with the accumulation of

microglial cells in the subretinal space, a site in which they

are normally absent, particularly if there is no light damage

(93) (McMenamin PG, unpublished data) (Fig. 10). Interest-

ingly, studies of other systems have revealed that

CX3CR1+CSF-1R+ myeloid precursor cells respond differently

in their turnover rates depending on whether it is basal
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Fig. 8. Retinal microglial cells. (A) Wholemount human retina showing CD45lo+ microglial cells (green), DAPI (Blue); (B) wholemount human
retina, showing CD45+ perivascular leukocytes with processes contacting the venule; (C) section of retina from retinal degeneration mouse (rds
mouse) showing large numbers of activated microglia throughout the retinal layers (F4 ⁄ 80 stain); (D) retinal microglia in wholemount from
CX3CR1-gfp transgenic mouse; the layers of microglia throughout the depths of the retina in this confocal stack of the entire retina are revealed
through color-coded depth projection; (E) microglia cultured from rat retinal explant; (F) flow cytometry of microglia from retina and brain (CNS)
showing characteristic CD45 ⁄ CD11b ⁄ c staining (x-axis shows CD11c+ cells gated on CD11b).
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homeostatic turnover or whether it is turnover and recruit-

ment associated with an inflammatory response. Thus, the use

of CX3CR1 as a marker for DC ⁄macrophages may not reveal

the complete picture (86, 94).

In contrast to the retina, the turnover of DCs in the uveal

tract is rapid (95). This rate is more in line with DC turnover

in lymph nodes and spleen and might be expected therefore

of populations of APCs that will respond rapidly to new

antigen.

Resident DCs and macrophages in the eye have

overlapping but complementary functions

The mononuclear phagocyte system and the eye

The mononuclear phagocyte system (MPS) in most tissues is

geared towards maintaining homeostasis (96). Resident DCs

patrol the tissues, sampling self-antigen while on the watch

for foreign antigen. To the former they maintain tolerance

and to the latter they induce immunity, after transporting the

respective antigens to the secondary lymphoid tissues (16, 97,

98). Resident macrophages meanwhile mostly function locally

by silently removing dead and dying cells during the normal

homeostatic process of tissue renewal (a housekeeping role).

In individual tissues, resident DCs and macrophages are cus-

tomized to vary these functions: in the skin, Langerhans cells,

originally thought to mediate immune responses, are more

likely to promote tolerance, while dermal DCs are pro-

grammed for immunity (12). Macrophages in the skin per-

form the classical role of tissue repair and debris clearance and

protection against microorganisms that breach the epidermal

barrier. In the lung alveolar macrophages act as a large net to

trap inhaled microorganisms and are thus the first site of

attack of organisms such as Mycobacterium tuberculosis (99, 100).

The eye presents an interesting variation on the above: the

corneal and conjunctival epithelial myeloid cells behave some-

what like their skin and lung counterparts, but corneal stromal

myeloid cells, apart from being mostly macrophages, also

have a novel anti-angiogenic role (see above). By contrast, the

role of the infrequent resident retinal DCs, situated at potential

entry sites of inflammatory cells into the retina, i.e. the

marginal zones of the retina, is not known, while the F4 ⁄ 80+

microglia probably have an immunosuppressive role in the

steady state (101).

Immune privilege

Immune privilege as a concept developed from the seminal

work of Medawar who showed that skin and tumor allografts

when placed in the anterior chamber of the eye were not

rejected (102, 103). Initially, this phenomenon was attributed

to tight blood–tissue barriers, then to a lack of blood or lym-

phatic vessels (thus preventing both the afferent and efferent

responses), followed by a lack of ocular APCs, all of which

CD11b 33D1
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Fig. 9. Triple staining of retinal flat mounts for CD11b (blue),
DCR1+ (33D1 green), and MHC Class II (red) in EAU. Note strong
co-positivity between DCR1 staining and MHC class II (merged). MHC,
major histocompatibility complex; EAU, experimental autoimmune
uveoretinitis.

50 µm

Fig. 10. Subretinal microglia stained with antibody Iba1 in aged
mouse retina. Hexagonal outlines of the retinal pigment epithelium are
shown in blue (phalloidin).
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proved ill-founded (2). Currently, it is believed that immune

privilege is a relative property, can be selective of different

aspects of the immune response, is present in tumors and

other tissues (4), and is inducible for instance in accepted vas-

cularized grafts (104). Much of this is now attributed to prop-

erties of the tissue and indeed tissue-centered regulation of

immune responses is now an accepted concept and is depen-

dent on the micro-environment or context in which an

immune response occurs.

Anterior chamber-associated immune deviation

Despite this more recent rationalization of experimental phe-

nomena, some concepts remain unexplained. One of these is

anterior chamber-associated immune deviation (ACAID),

which describes the induction of antigen-specific tolerance by

inoculation of soluble antigen into the anterior chamber of

the eye (Fig. 7). This process requires an intact spleen, and it

has been suggested that F4 ⁄80+ macrophages transport the

inoculated antigen to the spleen, where they further interact

with NKT cells, CD4+ T cells, and B cells to induce a subset of

suppressor CD8+ T cells (reviewed in 105). Definitive proof

that spleen-seeking eye-derived F4 ⁄80+ cells exist, has not

been shown and, while there is clearly a reproducible phe-

nomenon demonstrable [originally described by Medawar in

the skin graft experiments (102)], its mechanism remains

obscure. Interestingly, ACAID-inducing properties of aqueous

humor can be abolished in both eyes by application of retinal

laser thermal burns to one eye, adding further complexity to

the phenomenon (106). However, its relationship to immune

privilege proper, which describes the downregulation of the

immune response in the privileged tissue (2), is not obvious.

F4 ⁄ 80+ macrophages themselves are immunosuppressive

(101), and the dense networks of these cells in the eye (cor-

nea, retina, and uveal tract) probably provide some degree of

local privilege. In addition, in conditions of induced privilege,

local infiltrating myeloid cells appear to adopt this role.

Microenvironment and functional plasticity

It is likely therefore that the ocular microenvironment pro-

motes immune tolerance by acting directly on ocular myeloid

cells. There are several mediators and molecules of the

‘immuno-suppressive microenvironment’ (Table 1), and it is

likely that many more will be discovered. Factors such as vaso-

active-intestinal peptide (VIP), hepatocyte growth factor

(HGF), pituitary adenylate cyclase activating polypeptide

(PACAP), and many others, either directly promote tolerogenic

DCs and ⁄ or immunosuppressive macrophages (107, 108). In

particular, TGF-b present not only in abundance as latent cyto-

kine but also as the active moiety in the aqueous fluid appears

to have a major immunosuppressive role. Expression of pro-

grammed cell death domain-1 and its ligand (PD-1 and PDL-1)

in ocular tissues also has an important immunosuppressive

effect (109, 110). Some of these factors induce tolerogenicity

in DCs via indoleamine oxidase (IDO) (111–113). It is thus

not impossible that if such tolerogenic DCs trafficked through

the ocular compartments to the secondary lymphoid system,

they may retain the potential to promote systemic tolerance.

Trafficking of antigen from the eye

The above considerations raise the question of how antigen is

transported from the eye. Current notions of self-tolerance

propose that self-antigen is ‘sampled’ by sentinel DCs in the

steady state and transported to the secondary lymphoid tissues

where it transmits a non-immune, tolerizing signal to poten-

tial autoreactive T cells (114, 115). Early experiments of this

model in the eye used intracameral injection of ovalbumin

into mice adoptively transferred with transgenic OT-1 cells

Table 1. Mediators involved in immune privilege in the eye

Type of factor Example T-cell function Macrophage activity Antigen presentation Cell killing ⁄ apoptosis

Neuropeptide VIP, PACAP, CGRP
melanocortin, Substance P

Inhibits Inhibits
promotes

Neurotransmitter GABA, glycine Inhibits
Cytokine TGF-b, IL-10 Promotes*
Chemokine MCP-1, SDF-1
Membrane ligand FasL, CD200, TRAIL, APRIL Promotes
Membrane receptor TLRs ?Inhibits Promotes
Cellular enzymes IDO, L-arginase Inhibits Inhibits Promotes
MHC protein Qa-1 Inhibits
Prostaglandins PGE2, LTAb 4 Inhibits Inhibits
Cannabinolds Inhibits ?Inhibits ?Promotes
Free radical Peroxynitrate Promotes Inhibits Promotes

*Scavenger activity?
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(116). There was specific induction of OT-1 cells only in the

submandibular eye-draining lymph node (SM DLN). In later

experiments, labeled soluble antigen was tracked through the

lymphatic system and found to traffic to the spleen and even

as distantly as the mesenteric lymph node (68). In addition,

the speed of transport to the secondary lymphoid tissues was

very rapid (hours). Similar experiments have recently been

performed using soluble antigen applied to the denuded cor-

neal stroma and, once more, the speed of antigen transport

was very rapid, being detected within minutes in the SM DLN

(Fig. 11). However, from the cornea, soluble antigen only

trafficked to the eye-draining lymph node in its first pass and

then via the circulation to the spleen, and it did not traffic

generally throughout the secondary lymphatics until it had

drained from the venous circulation to commence a second

pass through the lymphatics (Zexu D, Kuffova L, Forrester JV,

unpublished data). By contrast, intracameral injection of solu-

ble antigen led to early general distribution to most secondary

lymphoid organs (68). Most recently, cell-associated antigen

was tracked using a system that allowed plasmid antigen

uptake into APCs but did not permit secretion of the antigen

due to lack of a signal sequence on the transcribed protein

(39). These studies showed that antigen from the cornea is

taken up by corneal DCs, which infiltrate the cornea after

minor abrasion, take up and process the antigen within a few

hours, and transport it selectively to the eye-draining lymph

node and the spleen, from which it is cleared over a period of

72 h. The potential therefore for immunity or tolerance to be

induced by eye-derived APCs is clearly present, is probably

initiated in the secondary lymphoid tissues, and regulation of

the developing effector response is likely to take place in the

eye, when the eye-seeking T cells return to the site of antigen

origin.

Cytokines and chemokines are important in the regulation

of this migratory DC behavior, and CCR7 is recognized to be

an important receptor for DC migration both in the steady

state and during inflammation (117). CCR7 is upregulated in

the iris in endotoxin-induced inflammation and is expressed

on corneal APCs in the corneal periphery in response to injury

in syngeneic grafts (118).

Role of tissue-specific DCs in the induction of tolerance

The possibility therefore that the microenvironment regulates

immune responses has taken on a new level of interest. As

indicated above, ocular immune privilege is a long-recognized

concept, and there is an extensive and growing list of the

many mediators which might modify DC behavior, thus pro-

moting tolerance (Table. 1). Local production of immune

mediators now has specific relevance to the induction of regu-

latory T (Treg) cells in situ in many sites, for instance in

response to infection by organisms such as Leishmania, and may

vary depending on the tissue (119). Such ideas are not very

far removed from the original notions surrounding immune

privilege and emphasize once more the importance of tissue

regulation, upwards or downwards, of the immune response.

These concepts have a special relevance to ocular infections

such as onchocerca, herpes simplex keratitis and retinitis, and

ocular toxoplasmosis.

Recruitment of myeloid DCs during ocular inflammation

Types of ocular inflammation

Ocular inflammation can be considered in anatomical and

pathological terms. The ocular surface is frequently subject to

a range of infectious and allergic diseases, while the uveal

tract, the sclera (Fig. 1), and the retina are more susceptible to

autoimmune and infectious (viral and parasitic) diseases. Initi-

ation of infectious disease in the intraocular compartments is

usually through a systemic inoculation of microorganisms,

inducing a local lymph node involvement and finally an ocular

15 min 30 min 4 h

Fig. 11. Tracking of EaGFP protein applied to the abraded corneal surface at different times up to 4 h post application. Sections of submandibu-
lar draining lymph node stained with anti-perlecan antibody (red); EaGFP (green). Note the appearance of EaGFP staining 30 min after the
application of labelled protein to the abraded cornea and the percolation of the protein through the perlecan+ draining lymph node conduits which
communicate with the high endothelial venules and ultimately the venous circulation.
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infection. Entry directly to the eye can also occur at the ocular

surface (e.g. by trauma or contact lens wear), and in these

cases the inflammation is often cleared by local innate

immune responses with a later adaptive immune response

producing a non-infectious immune attack as seen at a later

stage in corneal herpes simplex disease. Occasionally, infec-

tion may spread from another site, e.g. the lungs in tuberculo-

sis, inside trafficking infected macrophages, and a new

secondary tuberculosis focus ensues. This ‘Trojan horse

hypothesis’ has been proposed as one means by which

Toxoplasma gondii enters the eye (120). Intravenous metastatic

infection, e.g. of Candida retinitis, may occur in immunocom-

promised individuals.

The ocular surface

Corneal blindness is common worldwide, through conditions

such as trachoma (Chlamydia trachomatis infection), river blind-

ness (Onchocerca filarial infection), and viral infections such as

herpes simplex and the measles virus. Inflammatory disease of

the cornea and conjunctiva leads to the upregulation of many

pathogen recognition receptors (PRRs) including Toll-like

receptors (TLRs) (121), NOD-like receptors (NLRs), and

other components of the inflammasome (122). In experimen-

tal models of bacterial and fungal keratitis, TLRs in particular,

expressed on both surface corneal epithelium and on infiltrat-

ing DCs and macrophages, have a specific role in the induc-

tion of the immune response of the cornea to Fusarium (123).

In some corneal diseases, the mechanisms of DC priming of

T cells have been extensively detailed. For instance, endosym-

biotic Wolbachia bacteria have been identified as the pathoge-

netic element in Onchocerca filarial keratitis (124). An extract of

this organism, Brugia malayi female worm extract (BMFE), sig-

nals via TLR2 ⁄ 6 (125). This effect has been attributed to a

20mer peptide of B. Malayi Wb peptidoglycan-associated

lipoprotein (wBmPAL). The diacyl peptide induced systemic

TNF-a production as well as a neutrophil-mediated keratitis.

Interestingly, this peptide moiety primed DCs to induce a

non-polarized Th1 ⁄Th2 cell response (126). Similarly, an

important role for resident myeloid DCs and macrophages in

the regulation of the response to LPS ⁄TLR4-mediated keratitis

has been demonstrated using chimeric and conditional

ablation models (127).

The mechanism of herpes simplex viral (HSV) keratitis

(HSK) presents an interesting unresolved conundrum. HSV

infects the cornea, travels to the trigeminal ganglion, and

establishes latency. Initial infection of the corneal epithelial

cells is followed by an early HSV-specific Th1 response, which

induces a second stage of stromal keratitis about 10 days after

the initial infection. However, it is not known whether HSK

due to the immune response is induced locally or in the sec-

ondary lymph nodes with trafficking of antigen-specific T cells

to the site of infection (Fig. 12). Both CD4+ and CD8+ T-cell

responses are involved and vary in pathogenetic importance

dependent on the strain of virus used to infect the cornea. For

instance, the RE strain of HSK mediates HSK via CD4+ T cells

and DCs (possibly migratory Langerhans cells) (Fig. 12) are

early players in this response. However, direct infection of

DCs in the cornea during the initial epithelial infection has not

been demonstrated. In similar experiments on skin infection,

DCs migrate to the DLN and after cross-presentation of HSV

antigen to resident lymphoid DCs, induce antigen-specific

T cells which then home to the site of infection (128). This is

the likely route of HSK disease induction, but it is possible that

in situ antigen presentation can also occur by way of cornea-

resident memory T cells as has been shown in the skin (129).

An interesting associated site of CD8+ T-cell activation in this

model has been identified to occur in the latently infected

neurons of the trigeminal ganglion. These CD8+ T cells appear

to have a significant role in the maintenance of latency, para-

doxically via direct release of granzyme B into the neuronal

cell body (130). Presumably this process requires CD8+ T-cell

activation via an APC, but the nature of this cell and its source

are currently unknown. It has been suggested that ‘satellite’

glial cells may perform this function (131).

DC trafficking in corneal graft

There is considerable information on the role of donor and

host leukocytes in corneal allograft rejection. Corneal allo-

grafts enjoy a reputation for high levels of acceptance, even

when HLA matching is not performed, but this is somewhat

misplaced (132). Low-risk grafts (i.e. grafts performed in

patients who have a corneal opacifying type of dystrophic dis-

ease that does not involve prior inflammation) have an excel-

lent 1-year success rate. However, high-risk grafts (i.e. grafts

in which there has been previous infection such as herpes

simplex or in which there is extensive vascularization associ-

ated with the corneal opacity) fare much less well, and

indeed, the 5-year survival of such grafts is lower than that for

matched vascularized grafts such as the kidney or the heart

(133, 134). Models of corneal graft have been developed in

experimental animals which explore the mechanism of graft

rejection (reviewed in 135).

Corneal donor grafts normally utilize the central portion of

the tissue (6–8 mm diameter in the human, 3 mm in the rat,

Forrester et al Æ DC physiology and function in the eye

� 2010 John Wiley & Sons A/S • Immunological Reviews 234/2010 293



2 mm in the mouse), and the density of leukocytes in the cen-

tral cornea is low, although there are some MHC class II+ mac-

rophages (see above: Myeloid cells in ocular tissues – the

ocular surface section). Accordingly, direct allorecognition via

passenger leukocytes is minimal, while indirect allorecogni-

tion represents the major if not the exclusive route whereby

allograft rejection occurs (136–140). Experiments using

donor grafts, previously infected either with a non-secretory

green fluorescent protein (GFP)-labeled plasmid or with a

non-secretory C3¢-expressing plasmid, to Rag knockout mice

which have been reconstituted with C3¢-specific T cells have

shown that antigen from donor cornea is taken up and pre-

sented by host DCs which traffic to the site-specific draining

lymph node (SM DLN) and cross-present antigen on MHC

class II to naive T cells (39). The process begins within 6 h of

corneal grafting. As indicated above, soluble antigen from the

donor cornea is transferred even more rapidly to the second-

ary lymphoid tissues (30 min after application to the cornea),

but specific priming of T cells takes place in the eye-draining

SM DLN only when the cell-associated antigen arrives. Recent

studies suggest that initial activation of T cells occurs when

soluble antigen is taken up by resident lymphoid DCs, but that

proliferative T-cell responses are induced when the second

wave of cell-associated antigen arrives some hours later via

migratory DCs from the tissues (141, 142). During the next

several days, waves of T-cell expansion and contraction occur

in the SM DLN, and finally graft rejection takes place about

12–15 days after grafting (143). Interestingly, although there

is considerable myeloid cell and T-cell infiltration of the host,

infiltration of the donor with large numbers of cells does not

take place until around 9–10 days after grafting (143)

(Fig. 13). It appears therefore that accumulation and retention

of T cells within the graft has to reach a certain level before

rejection can occur. Graft rejection is accompanied by much
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Fig. 12. Corneal epithelial herpes simplex infection (dendritic ulcer) in the mouse using an eGFP recombinant human herpes virus-1: day 2
postinfection. (A) Clinical in vivo appearance showing dendritiform corneal epithelial ulcer; Rose Bengal dye stains the infected ⁄ necrotic cells (red);
(B) confocal microscopy image of fixed cornea showing eGFP HSV-infected cells; (C) confocal image combining eGFP HSV-infected cells with CD45+

leukocytes (blue); (D) confocal image showing eGFP HSV-infected epithelial cells and non-infected F4 ⁄ 80+ macrophages ⁄ DCs; low-power view of an
entire clinical ‘dendrite’; (E) detail of a groove of the dendrite showing F4 ⁄ 80+ non-infected (red) and eGFP-infected cells (green); (F) similar image
to (E) showing CD11b+ macrophages ⁄ DCs (blue), actin+ uninfected epithelial cells (red), and eGFP HSV-infected epithelial cells (green), located
inside the herpetic dendrite. GFP, green fluorescent protein; HSV, herpes simplex virus; DCs, dendritic cells.
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of the expected upregulation on adhesion molecules and

chemokines some of which are necessary for rejection (144–

146).

Understanding why some grafts are rejected and others

are not is difficult. Uniquely, the cornea allows the

mechanism of indirect allorecognition of a single antigen

disparity to be evaluated (147, 148), and experiments

indicate that between 20% and 50% of donor grafts using

both X–Y disparity and the transgenic expression of a

single foreign antigen such as hen egg lysozyme (Hel

antigen) are rejected, albeit slowly (Vitova A, Kuffova L,

Holan V, Cornall RC, Forrester JV, et al., unpublished

observations). Limiting factors include antigen-specific

T-cell precursor frequency and APC priming through innate

immune mechanisms.

The intraocular compartment

Despite the evidence for the privileged status of the eye, intra-

ocular inflammation (uveitis, uveoretinitis, and uveoscleritis)

is common and ranks fourth as a cause of blindness in the

Western world (149). About 50% of cases are due to infec-

tious causes, and the full gamut of microorganisms can be

implicated. Prominent are mycobacterial infections, parasitic

infections particularly toxoplasmosis, and viral diseases such

as cytomegalovirus (CMV) and herpes (simplex and zoster).

Recent and resurgent additions to this list are spirochetal

infections (Lyme disease and syphilis) and unusual viral infec-

tions such as dengue fever. Many of these diseases are recog-

nized as ‘opportunistic’ infections that develop in

immunocompromised individuals. Thus, they have become

more frequent as a result of the acquired immune deficiency

syndrome epidemic. Diseases such as CMV or herpes-induced

acute retinal necrosis (ARN) were almost unknown prior to

human immunodeficiency virus infection (reviewed in 150).

In one sense, such diseases reflect the fact that immune privilege

of the eye comes at with some cost (6), and this organ is thus

more liable to attack and damage bymicroorganisms that would

be cleared with full restoration of function by other tissues.

The remaining non-infectious cases of intraocular inflam-

mation are considered to be autoimmune or at least immuno-

logically mediated. This is based on clinical observations of

conditions such as sympathetic ophthalmia, probably one of

the first autoimmune diseases described, in which inflamma-

tion develops in 2–3 months in the healthy fellow eye follow-

ing penetrating injury to the first eye (70). In classical

thinking, release from the injured eye of autoantigen ‘seques-

tered’ from the immune system during development and thus

not ‘seen’ as self leads to the activation of autoreactive T cells

systemically, which then home to the sites of autoantigen in

the healthy eye and cause inflammation. Initial studies of uveal

tissue for the elusive antigen led eventually to the discovery of

the retina as the repository of several potent autoantigens

(151, 152), mainly as photoreceptor antigens, and several

have now been sequenced and pathogenic epitopes identified

(153). A model of experimental autoimmune uveoretinitis

(EAU) has been described with considerable mechanistic ana-

logs in similar models of encephalomyelitis and collagen

arthritis, and the genetics of species and strain susceptibility

have been documented (153).

Accordingly, questions relating to the pathogenesis of EAU

are the same as those relating to other models of autoimmuni-

ty, such as how and where do autoreactive T cells become

activated? Do activated T cells home to the retina? Can acti-

vated T cells cross the blood–retinal barrier? Which APCs

induce the disease and where do they do this?

Current concepts in pathogenesis of inflammatory disease

suggest that initial priming and activation of effector T cells

occur during the first 6–72 h of interaction with specific

antigenic peptide–MHC class II (pMHCII) complexes in the

HostA B CHost Host200 µm
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Fig. 13. Influx of CD11c+ DCs into the transplanted mouse corneal graft. (A) 0 h, (B) 3 days and (C) 9 days postgraft. Note the marked infiltration
of CD11c+ cells in the host corneal bed by 3 days but absence of such cells in the donor graft; by 9 days there was considerable CD11c+ infiltration in
the donor tissue as well as in the host. Arrows - recipient/graft interface, DCs, dendritic cells.
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secondary lymphoid tissue, where the T cells are retained by

increased expression of CD62L and downregulation of

sphingosine-1R (154). During this time they undergo clo-

nal expansion. They then depart the LN after re-expression

of sphingosine-1R and home to the tissues. Once more

they are retained in the tissues by cells expressing specific

pMHCII complexes, usually but not necessarily DCs

(reviewed in 155). In the target tissues, however, there is little

or no proliferation of T cells; rather, there is secretion of pro-

inflammatory cytokines such as IFN-c, TNF-a, and IL-17,

which recruit and activate pathogenic cells, particularly pro-

inflammatory macrophages. In addition, there are several sets

of regulatory cells recruited to the retina during autoimmune

inflammation including suppressive macrophages, which are

likely to inhibit proliferation but not accumulation of patho-

genic T cells (156). Other regulatory cells (157) either in the

tissues or in the secondary lymphoid tissue probably act to

downregulate the production ⁄ function of pathogenic T cells

(see later).

There are several candidate resident pMHCII-expressing

APCs in the uvea ⁄ retina that might undertake this secondary

cytokine-producing activation of T cells. In particular, in the

retina we have shown that T cells accumulate in the initial

stages of EAU around the 33D1+ cells in the retina at the

peripheral margins (pars plana) and around the optic nerve

(82). In the later stages, there is migration of T cells into the

retina via the retinal vessels and active presentation of pMHC

(Fig. 14). Similar experiments have been performed in rat

EAU, using a GFP-labeled retinal S antigen-specific T-cell line

(Williams K, Linington C, Forrester JV, unpublished data).

Adoptive transfer of these cells intraperitoneally was followed

by an initial ‘disappearance’ of the cells which then

re-appeared in the eye and in the spleen. However, only in

the eye were they activated (high expression of OX40), and

such activated T cells were initially localized to the peripheral

retina ⁄ uveal tract where these two tissues meet.

Although such ‘resident’ APCs are likely to receive and acti-

vate trafficking primed autoreactive T cells egressing the

lymph node, a sustained inflammatory response on the one

hand requires further recruitment of potential APCs, while

downregulation of the response requires induction of regula-

tory mechanisms including Tregs. In adoptive transfer experi-

ments, it has been shown that myeloid cells are continually

recruited to the retina during the active stages of EAU (158).

However, only fresh bone marrow-derived monocytes are

recruited, not cells which have been activated in vitro prior to

transfer or cells which have previously trafficked through a tis-

sue, e.g. peritoneal macrophages ⁄DCs. In addition, adoptively

transferred fresh bone marrow cells do not immediately enter

the inflamed retina but require several hours of recirculation

before they can enter the tissues. During this time, they upre-

gulate a range of adhesion molecules, such as CD44 and

chemokine receptors such as CCR7, which prepare them for

duty (158).

Most of the models of EAU and indeed other autoimmune

models utilize antigen emulsified in an adjuvant, inoculated

into the dermis. This approach allows activation of DCs

through innate immune receptors and activation of antigen-

specific T cells in the skin-draining LN. In a spontaneous

model of EAU and also in models in which central tolerance is

impaired, ‘spontaneous’ activation of T cells in the periphery

leads to EAU (159, 160). An unanswered question therefore

remains. Does antigen from the retina traffic to the secondary

lymphoid tissues, and if so, how and when does this occur?

Spontaneous EAU can be induced in a double transgenic

mouse model in which foreign antigen, hen egg lysozyme

(Hel) is expressed in the retina under the control of the pro-

moter for IRBP and crossed to the T-cell receptor mouse for

Hel (double transgenic Hel-IRBP:TCR or IRBP-Dbl Tg mice)

(161). These mice develop EAU 21 days after birth, which

progresses into adulthood with complete retinal destruction

despite considerable central deletion of antigen-specific T

cells. As Hel antigen is bound to the membrane of the photo-

receptor outer segment in this model, no soluble Hel antigen

escapes to the periphery. However, sufficient cell-associated

Hel antigen must have escaped to activate T cells in the

periphery and permit them to traffic to the retina to cause

damage. Experiments are in progress to detect the cell-associ-

ated antigen, and this investigation should reveal considerable

information on how T cells are educated in the periphery both

for tolerance and its breakdown (autoimmunity).

MHC-II, CD3 F4/80, CD3

20 µm 20 µm

Fig. 14. Close encounters between MHC class II+ (left panel) and
F4 ⁄ 80+ (right panel) DCs with CD3+ T cells in flat mount prepara-
tions of retina in EAU at the peak of the disease. MHC, major histo-
compatibility complex; DCs, dendritic cells; EAU, experimental
autoimmune uveoretinitis.
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DCs in clinical ocular disease

Ocular surface disease

As might be expected, DCs form part of the inflammatory cell

exudate in many forms of ocular surface disease (162–164),

but no systematic clinical studies have been carried out to

determine their role. DCs are also found in the stroma of

rejected human corneal grafts (165) and can even be imaged

by in vivo confocal microscopy in patients with keratitis (166).

They are also seen in keratoconus, a condition in which there

may be minimal, if any, inflammation (Fig. 15).

Intraocular inflammation

DCs have been identified in pathological specimens from

patients with severe uveitis and very recently have been

detected using flow cytometry in aqueous fluid samples taken

from patients with active chronic panuveits (Dennison A,

Murray P, Curnow J, personal communication). DCs have also

been studied in the blood of patients with various forms of

uveitis, including that associated with Behçet’s disease. Such

patients have been found to have reduced levels of circulating

pDCs (167, 168), as has been found in many patients with

autoimmune disease and particularly SLE (169). In patients

with non-Behçet’s uveitis, reduced levels of pDCs have also

been detected, and interestingly, pDCs in these patients

appeared to be unable to elaborate IFN-a in response to CpG

when they were cultured in vitro, if they were concomitantly

being treated with IFN-a for control of their uveitis (168).

Despite this endogenous failure of their pDCs to secrete IFN-

a, systemic treatment with IFN-a led to an increase in circu-

lating CD4+CD25 Treg+ cells as well as increased levels of IL-2

(Yeoh J, Kuffova L, Forrester JV, unpublished data).

The role of DCs in infectious uveitis has not been directly

studied. However, recent studies of extrapulmonary tubercu-

losis suggest that infected DCs and macrophages from infec-

tive granulomas in the lung can migrate away from the lung

lesion as part of a highly dynamic cellular process. Infected

DCs then have the potential to lodge in small blood vessels

and lymphatics in tissues such as the choroid of the eye and

produce miliary tubercular lesions. Further study of this

potential mechanism is in progress (100, 170).

Retinal degeneration

Age-related macular degeneration (AMD) has recently been

highlighted as a disease that may develop through possible

innate immune dysregulation. In part, this view has evolved

from the evidence indicating that mutations in some comple-

ment components as well as other proteins greatly enhance

the risk of contracting AMD. Excessive deposition of comple-

ment components at the retinal pigment epithelial ⁄ outer reti-

nal interface (Fig. 16), particularly concentrated in deposits of

waste material (termed drusen), may act as triggers for

inflammatory macrophage activation and induction of focal

regions of aberrant angiogenesis, which have devastating

effects on visual acuity if they are located close to the fovea

(reviewed in 171). The role of resident myeloid cells in this

Fig. 15. Human corneal dendritiform cells, presumed leukocytes,
imaged in vivo by reflectance confocal microscopy in a case of keratoc-
onus. The acute accumulation of fluid in this previously extremely thin
cornea, clinically presenting as ‘acute corneal hydrops’, permitted good
resolution of the infiltrating cells (photograph courtesy of DV Patel and
CN McGhee, Auckland University).
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Fig. 16. Complement deposition at the retina ⁄ choroidal interface in
aged mice. (A) Six-week-old mouse retina; (B) 18-month-old mouse
retina. Complement (green), red (PI). Ch, choroids; RPE, retinal pigment
epithelium.
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process has been investigated. As indicated above, the retina

proper does not have DCs except in the peripheral regions.

However, endogenous retinal microglia become activated

with age and disease and migrate into the subretinal space

(Figs 8 and 10) where they accumulate lipofuscin (92, 93). In

addition, it is likely that there is increased recruitment of infil-

trating cells (? microglial precursors). In other forms of retinal

degeneration, sialoadhesin+ microglia infiltrate the retina

(172) as part of a low-grade pro-inflammatory response

(173, 174) (Fig. 8). This process has been reported to be even

more prominent in the CCL2 ⁄CCR2) ⁄ ) mice (175), in

Cx3cr1) ⁄ ) mice (176), and in double knockouts (177). These

mice have been reported to develop a retinal degeneration and

also to develop ‘drusen-like deposits’ in their outer retina

(Fig. 16), although these are actually intraretinal, unlike

drusen in the human eye which are sub-RPE (178). Recent

studies suggest that there may be similarities in the changes in

these mouse models with those found in aging and light-

induced damage. Drusen act as sinks for complement deposi-

tion and also contain many other retinal proteins and lipids in

a partially degraded state. Recent reports have suggested that

carboxyethylpyrrolle derivatives of photoreceptor membrane

lipids may be taken up by choroidal DCs, which lie immedi-

ately below the RPE, and are presented as atypical antigenic

material, possibly on CD1d, to T cells, thus initiating a low-

grade autoimmune inflammatory response (179). This may

then promote the later infiltration of inflammatory macro-

phages and the subsequent angiogenic response.

Similarities between AMD and atherogenesis have been

drawn on many occasions, and recently the possibility that

aortic valve DCs may play a part in such processes has been

raised (180). This has much in common with the develop-

ment of AMD as outlined here. In addition, this process in the

eye has a direct immunological analog: in humans with low-

grade posterior uveitis and in mice in the resolving phase of

EAU, subretinal neovascular responses causing visual loss in

precisely the same manner as wet AMD develop, which in the

case of EAU are induced by autoimmune responses to photo-

receptor degradation products (Fig. 17).

DCs as therapy for ocular disease

As DCs have a central role in maintaining and regulating both

tolerance and immunity, one approach has been to target

endogenous DCs using antibody fusion proteins that bind to

DC-specific cell surface antigens. This has been used to pro-

mote both tolerance in models of autoimmunity and immu-

nity against tumors (16, 181). Different DC molecular targets

have been used to tip the balance in favor of immunity versus

tolerance, for instance CD205 to promote tolerance and DCR1

to promote immunity. Both approaches have had some suc-

cess in experimental models but have not yet reached use in

clinical studies (84, 182–184).

An alternative approach has been to use DCs as a cellular

vaccine: once more this has been promoted in developing vac-

cines against human immunodeficiency virus but also to

restore tolerance, as in autoimmune diseases. In several exper-

imental models particularly autoimmune diabetes, the admin-

istration of antigen-primed DCs to mice has been shown

to prevent the onset of disease (16, 182, 185). Similarly,

antigen-primed DCs have been shown to induce tolerance in

EAE (186) and in collagen arthritis (187, 188). Antigen-

primed DCs have most recently been used to prevent EAU

A

C

E F
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100 µm

Fig. 17. Neovascularization at the retinal ⁄ choroidal interface. (A–D)
Sequences taken from a fluorescein angiogram in a patient with a subreti-
nal neovascular membrane typical of age-related macular degeneration
(wet type) or in the chronic stages of choroido-retinal inflammatory eye
disease (uveitis); the images show the progressive tracking of intrave-
nously injected fluorescein dye through the retinal vessels with accumu-
lation and leakage of dye in the neovascular complex (arrow). (E, F)
Similar neovascular complex in the subretinal space in the mouse in the
very late stages of experimental autoimmune uveoretinitis. (A) red-free
fundus photograph; (B–D) time sequences of fluorescein angiograms as
the dye passes through the retinal vasculature. (E) Clinical fundus image
of the mouse eye; (F) flat mount preparation of mouse retina stained
with collagen type IV showing two neovascular complexes.
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and, as for other models, appear to do so by expanding anti-

gen-specific Tregs (189). Interestingly, while pMHCII com-

plexes appear to be required to induce tolerance, their main

function appears to be in ensuring egress of CD62L+ Tregs

from the DC-draining lymph node rather than inducing clonal

expansion of Tregs, which appears to be possible in a non-

specific manner. The expanded Tregs are then available to

home to secondary lymphoid tissue where T effectors are

expanding after immunization with peptide (189). By con-

trast, CCR7 appears to be necessary for Tregs to home to the

inflamed tissue, but their ability to inhibit disease at the site of

inflammation appears to be less than in the secondary lym-

phoid tissue, i.e. during priming (190, 191). Questions relat-

ing to the site of action of Tregs and their clonal expansion

and functional capacity are important in relation to regulation

of autoimmune inflammation, and direct tracking studies sug-

gest that Tregs at the site of inflammation have suppressive

effects of some magnitude (142).

From a clinical perspective, preventing the onset of disease

has less immediate therapeutic relevance compared with treat-

ing active disease. In this regard, models of spontaneous auto-

immune disease have considerable value, and models of

diabetes in which disease is initiated through a prodromal in-

sulitis have shown that it is possible to regulate disease when

T-effector cell priming has clearly occurred (185). Recently,

in the model of spontaneous EAU developed using the double

transgenic Hel-IRBP:TCR mouse described above (161), mice

develop EAU as a focal inflammation affecting the retina–cho-

roid which progressively develops over 4–6 weeks to com-

plete retinal destruction. In preliminary studies, we have

observed that in mice in which Hel-pulsed DCs have been

administered subcutaneously at d21 postnatally, the disease

can be halted. These are encouraging early results and further

experiments are in progress.

Immune cell vaccine therapy is not without potential

side effects: in trying to induce immunity against tumors,

autoimmunity against cross-reactive self-antigens can be

induced, for instance against melanin-associated antigens

leading to vitiligo after DC therapy. A recent report in a

patient with metastatic skin melanoma described the devel-

opment of full-blown signs of Vogt–Koyanagi–Harada dis-

ease (vitiligo, alopecia, hearing loss, poliosis, and bilateral

panuveitis) after administration of autologous Treg tumor-

infiltrating lymphocytes (192). In addition, the theoretical

risk of inducing tumors in patients being treated for auto-

immune disease is possible, but this therapy has not yet

reached the clinic.

Conclusion

DCs pervade and reside in all tissues including the eye. In

the eye, an ‘immunosuppressive’ microenvironment proba-

bly confers on DCs those special properties that contribute

towards what is widely recognized as immune privilege.

However, these effects on DCs in the eye are fundamen-

tally not different from equivalent effects on DCs in other

tissues: it is merely a matter of context. Accordingly, there

is much to be learned from studying DC behavior in tis-

sues such as the eye and the brain, as they allow greater

understanding of immunopathological processes. They also

allow the construction of novel therapeutic approaches to

control the disease, be it to promote immunity and inhibit

tumors and infectious disease or to restore regulatory con-

trol over autoimmune disease.
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